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Abstract. An extended car following model is proposed by incorporating intelligent transportation system
and the backward looking effect under certain condition in traffic flow. The neutral stability condition of
this model is obtained by using the linear stability theory. The results show that anticipating the behavior
of vehicles preceding and following one vehicle could lead to appreciable stabilization of traffic system.
From the simulation of space-time evolution of the vehicle headways, it is shown that the traffic jam could
be suppressed efficiently via taking into account the information about the motion of two preceding vehicles
and one following vehicle, and the analytical result is consistent with the simulation one.

PACS. 64.60.Fr Equilibrium properties near critical points, critical exponents – 05.70.Fh Phase transitions:
general studies – 05.70.Jk Critical point phenomena

1 Introduction

Traffic jam is an important issue from the viewpoint of
transportation efficiency and reduction in pollution, which
has thus attracted much attention recently. As is well-
known, if the traffic flow is in the congested state, much
carbon dioxide and noise will be generated and plenty
of energy will be wasted. So it is necessary to raise the
transportation efficiency and prevent traffic jams. In re-
cent years, automatic driving control systems have been
utilized as a part of intelligent transport system (for short,
ITS). One of the targets of ITS is to suppress the appear-
ance of the traffic jam.

A number of researchers plunged into the investiga-
tion. Helbing [1] presented an improved gas-kinetic traf-
fic model, which differs from others mainly by introduc-
ing non-local interaction term that takes into account the
space requirements of vehicles and the correlations of suc-
cessive vehicle velocities. The model reflected the anticipa-
tion behavior of drivers, which is responsible for a smooth-
ing effect that acts only in the neighboring backward
direction. Nagatani [2] put forward an extended optimal
velocity model including the vehicle interaction with the
next vehicle ahead (i.e., the next-nearest-neighboring in-
teraction). Xue [3] proposed a lattice model of optimized
traffic flow with the consideration of the optimal current
with the next-nearest-neighboring interaction. After that
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Ge et al. [4] considered arbitrary number of sites ahead.
Lenz et al. [5] constructed a model that a driver can re-
ceive the moving information about many vehicles ahead
of him/her. In 2004, Hasebe et al. proposed an extended
optimal velocity model applied to cooperative driving con-
trol system by considering any arbitrary number of vehi-
cles that precede [6], and we called it forward looking opti-
mal velocity model. They found that there exist a certain
set of parameters that make traffic flow “most stable” in
this model. Ge et al. [7] continued to investigate the dy-
namic behavior near the critical point of the model.

The above models are related to the forward looking
effect, but only few models studied the backward looking
effect, such as the models proposed by Nakayama et al. [8]
and Hasebe et al. [9]. We think it is reasonable to take the
backward looking effect into account.

In this paper, an extended car following model with the
consideration of arbitrary number of vehicles ahead and
one vehicle following on a single-lane highway is presented.
The linear stability theory is given to show the stabiliza-
tion effect of the new consideration. Numerical simulation
is carried out to validate the advantages of the model com-
pared to the other extended car following model.

2 The backward looking models

In 1995, Bando et al. proposed a very charming micro-
scopic car following model called the optimal velocity
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Fig. 1. The phase diagram of the OV model and the BL-OV
model.

model (for short, OV model) [10]. It was based on the
idea that each vehicle has an optimal velocity, which de-
pends on the distance between it and its preceding vehicle.
They used the acceleration equation

d2xj(t)
dt2

= a

[
V (∆xj(t)) − dxj(t)

dt

]
. (1)

where xj(t) is the position of vehicle j at time t, ∆xj(t) ≡
xj+1(t)−xj(t) is the headway between car j and car j +1
at time t, a is the sensitivity of a driver, and V is the
optimal velocity function. Despite its simplicity, the OV
model can be employed to describe various properties of
real traffic flows, such as the instability of traffic flow, the
evolution of traffic congestion, and the formation of stop-
and-go waves. Just because the OV model can describe
the formation mechanism of traffic jam, many researchers
discussed how to stabilize the traffic flow in the context of
the extension of the models [5–9].

In the OV model, the appearance of congestion can
be suppressed by choosing higher sensitivity. Nakayama
et al. [8] considered that a driver could look at the follow-
ing vehicle as well as the preceding one, which is called
the backward looking optimal velocity model (for short,
BL-OV model). The BL-OV model consists of the follow-
ing equation

d2xj(t)
dt2

= a

[
VF (∆xj(t)) + VB(∆xj−1(t)) − dxj(t)

dt

]
, (2)

where VF (∆xj(t)) is the OV function for forward look-
ing, which is equivalent to the V (∆xj(t)) in equation (1).
VB(∆xj−1(t)) is the OV function for backward looking,
which is a function of the headway between the consid-
ered vehicle and its following one. The two OV functions
have been chosen as

VF (∆xj) = α′[tanh(∆xj − β) + γ], (3)

VB(∆xj−1) = −α′′[tanh(∆xj−1 − β) + γ], (4)

where α′, α′′, β and γ are positive constants. The func-
tion VB(∆xj−1) has the effect of increasing the vehicle
velocity, if the headway between two successive vehicles
becomes small.

From Figure 1 we can see that the homogeneous flow is
stable for both models in the upper region, in the middle

region it is unstable only for the OV model, and in the
lower region it is unstable for both models. Figure 1 clearly
shows that the stable region for the BL-OV model is larger
than that for the OV model.

In 2003, Hasebe et al. [9] presented an extended opti-
mal velocity model applied to cooperative driving control
system by taking into account arbitrary number of vehicles
that precede or follow, which is called hybrid OV model
(for short, HB-OV model). The motion equation reads

dx2
j

dt2
= a

[
V (∆xj+l+ , ..., ∆xj+1, ∆xj , ∆xj−1, ..., ∆xj−l− )

− dxj

dt

]
,

(5)

The model with l+ = l− = 0 is the original OV model.
They concluded that the HB-OV model (l+ = l− = 1) is
a candidate as a dynamical model of cooperative driving
system that controls real traffic flow on a highway.

3 An extended OV model

Applying the information provided by ITS, a backward
looking anticipation optimal velocity model (for short,
BLA-OV model) is presented as follows. The vehicle mo-
tion is described by the following differential equation:

dxj(t + τ)
dt

= pVF (∆xj(t), ∆xj+1(t), ..., ∆xj+n−1(t))

+ (1 − p)H(hc − ∆xj−1(t))VB(∆xj−1(t)), (6)

where n denotes the number of vehicles ahead consid-
ered; τ = 1/a is introduced to denote the delay time
with which the vehicle velocity reaches the optimal ve-
locity as the traffic flow is varying; H(·) is the heavi-
side function. It has been assumed that a driver could
obtain the information of n vehicles in front. The vehi-
cle velocity dxj(t + τ)/dt is adjusted according to the
headways ∆xj−1(t), ∆xj(t), ∆xj+1(t), ..., ∆xj+n−1(t).
Through linear and nonlinear analyses, we concluded that
only the information of three vehicles ahead is enough for
cooperative driving car following model (i.e., n = 3) with-
out including the backward looking effect [7], i.e., the sec-
ond term on the right side of equation (6). In the BLA-OV
model, p stands for the relative roles of the two OV func-
tions, and we set p = 0.8 in the later simulation. That is to
say, the forward looking effect is more important than the
backward looking effect. We think that the preceding vehi-
cles and the following one, which have different effects on
the considered vehicle, should be considered separately. So
the corresponding OV functions must be different. Besides
that, H(hc−∆xj−1(t)) as a factor is add to the backward
looking term of the dynamical equation (6). Because we
think that if the following vehicle is very near to the con-
sidered vehicle, the considered one has to accelerate for
avoiding collision. So the backward looking effect plays its
role only if the headway is less than a certain distance
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Fig. 2. The dash line and the solid line corresponding to
VB(∆xj−1) in the BL-OV model and the BLA-OV model re-
spectively, where α′′ = 1, β = 4.0, γ = tanh(4.0).

between the successive vehicles, which is set as the safety
distance hc.

We select the following OV functions for the BLA-OV
model:

VF (∆xj(t), ∆xj+1(t), ..., ∆xj+n−1(t)) =

α′
[
tanh

(
n∑

l=1

ξl∆xj+l−1(t) − β

)
+ γ

]
, (7)

VB(∆xj−1) = α′′[− tanh(∆xj−1 − β) + γ], (8)

where ξl is the weighting function of ∆xj+l−1(t) in equa-
tion (7). It is necessary to point out that ξl (l = 1, 2, ..., n)
have the following properties:

(1). ξl (l = 1, 2, ..., n) decrease monotonically with increas-
ing l, which means ξl/ξl−1 < 1, for we know that the
influence of the vehicles ahead on the vehicle motion
reduces gradually as the distance between the consid-
ered vehicle and the vehicle ahead increases;

(2).
∑n

l=1 ξl = 1, and ξl = 1 for n = 1.

Equation (8) differs from equation (4) as shown in Fig-
ure 2. The lower line corresponds to the OV function in the
BL-OV model, and the upper line corresponds to that in
the BLA-OV model. VB(∆xj−1) decreases monotonically
with increasing ∆xj−1, and it is always positive for only
making the considered vehicle accelerate. As the headway
∆xj−1 is greater than the safety distance hc, the BLA-OV
model is reduced to the cooperative driving OV model [7],
and the backward looking effect disappears, which means
the second term in the right hand of equation (6) does not
work.

In the BLA-OV model, we adopt the first order dif-
ferential equation with time delay, which is different with
the second form of equation (5). While according to the
linear stability analysis, the results will not change with

the equation forms. Making the Taylor expansion of equa-
tion (6) and omitting the higher order term of τ , we could
obtain the corresponding second order differential equa-
tion. By transforming time derivatives to asymmetric for-
ward differences, equation (6) could be rewritten as the
difference equation easily, which is convenient for numer-
ical simulation.

4 Linear stability analysis

The method of linear stability analysis is applied to the
extended car following model. It is obvious that the vehi-
cle moves with the constant headway h and the optimal
velocity pVF (b, b, ..., b) + (1 − p)VB(b) is the steady state
solution for equation (6), given as

x0
j(t) = bj + [pVF (b, b, ..., b)

+ (1 − p)VB(b)]t with b =
L

N
, (9)

where N is the total number of vehicles, and L is the road
length.

Suppose yj(t) to be a small deviation from the steady-
state solution x0

j(t): xj(t) = x0
j (t) + yj(t). Substituting

it into equation (6) and linearizing the resulting equation
yield

dyj(t + τ)
dt

= pV ′
F (b)

n∑
l=1

ξl∆yj+l−1(t)

+ (1 − p)H(hc − b − ∆yj+l−1)VB(h + ∆yj−1)
− (1 − p)H(hc − b)VB(h), (10)

where ∆yj(t) ≡ yj+1(t) − yj(t), and V ′(b) =
dV (∆xj)/d∆xj |∆xj=b. For simplicity, V ′

F (b, b, ..., b) is in-
dicated as V ′

F (b) in the above equation and hereafter. Here
we mainly focus on the condition b < hc − |∆yj−1|.

Expanding yj in the Fourier-modes: ∆yj(t) =
exp(ikj + zt), we obtain

zezτ = pV ′
F (b)

n∑
l=1

ξl(eikl − eik(l−1))

+ (1 − p)V ′
B(b)(1 − e−ik), (11)

Expanding z = z1(ik) + z2(ik)2 + ..., and inserting it into
equation (11) lead to the first- and second-order terms of
coefficients in the expression of z respectively

z1 = pV ′
F (b) + (1 − p)V ′

B(b), (12)

z2 = −z2
1τ − (1 − p)V ′

B(b)
2

+
pV ′

F (b)
2

n∑
l=1

ξl(2l − 1), (13)

Thus the neutral stability condition is given by

τ =
pV ′

F (b)
∑n

l=1 ξl(2l − 1) − (1 − p)V ′
B(b)

2[pV ′
F (b) + (1 − p)V ′

B(b)]2
, (14)
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Fig. 3. The phase diagram of the extended OV models, where
the upper three lines corresponding to the cooperative driv-
ing car following model, the middle line corresponding to the
HB-OV model and the lower three lines matching the BLA-
OV model respectively, and n = 3, m = 1 representing three
preceding vehicles and one following vehicle.

Corresponding to the HB-OV model, the neutral stability
condition is

τ =

∑l+
l=l− V ′

l (2l + 1)

2[
∑l+

l=l− V ′
l ]2

. (15)

where

(see equation above)

For small disturbances with long wavelengths, the uniform
traffic flow is unstable in the BLA-OV model under the
condition that

τ >
pV ′

F (b)
∑n

l=1 ξl(2l − 1) − (1 − p)V ′
B(b)

2[pV ′
F (b) + (1 − p)V ′

B(b)]2
. (16)

The neutral stability lines in the parameter space (∆x, a)
are shown in Figure 3 by the solid line. The upper three
lines correspond to the cooperative driving car follow-
ing model, the middle line corresponds to the HB-OV
model and the lower three lines match the BLA-OV model
respectively, where n stands for the preceding vehicle
and m represents the following vehicle. For the case of
n = 1, m = 0, the upper neutral stability line is consistent
with that of the original OV model. We select the expres-
sion of equation (18) for ξl, and for the convenience to
compare, the parameters in HB-OV model are defined as
V ′
−1 = −1/7, V ′

0 = 5/7, V ′
1 = 2/7, V ′

2 = 1/7. There exist
the critical points (hc, ac) for the neutral stability lines
such that the uniform state irrespective of vehicle head-
way is always linearly stable for a > ac, while uniform
state in a neighborhood of hc are unstable for a < ac. The
apex of each curve indicates the critical point. The traffic
flow is stable above the neutral stability line and traffic
jam will not appear. While below the line, traffic flow is
unstable. From Figure 3 we can see that:

(i) with taking into account more vehicles ahead, the
critical points and the neutral stability curves are
lowered, which means the stability of the uniform
traffic flow has been strengthened;

(ii) while the backward looking effect is added to the
model, the traffic jam can be suppressed efficiently;

(iii) moreover, the backward looking effect plays more im-
portant role than the next-nearest-neighboring vehi-
cle;

(iv) the stability region in the BLA-OV model is larger
than that in the HB-OV model;

(v) the information of two vehicles ahead is enough for
the BLA-OV model.

5 Numerical simulation

For the convenience of simulation, we rewrite equation (6)
into difference form.

∆xj(t + 2τ) − ∆xj(t + τ) = pτ

[
VF

(
n∑

l=1

ξl∆xj+l(t)

)

−VF

(
n∑

l=1

ξl∆xj+l−1(t)

)]
+ (1 − p)τ

× [H(hc − ∆xj(t))VB(∆xj(t))
− H(hc − ∆xj−1(t))VB(∆xj−1(t))]. (17)

Computer simulation was carried out for the BLA-OV
model described by equation (17). The boundary condi-
tions selected are periodic ones. The initial conditions are
chosen as follows: ∆xj(0) = ∆x0 = 3.5, ∆xj(1) = ∆x0 =
3.5 for j �= 50, 51, ∆xj(1) = 3.5−0.5 for j = 50, and
∆xj(1) = 3.5 + 0.5 for j = 51, where the total number of
vehicles is N = 100 and the safety distance is hc = 4.0.
The weighting function in equation (7) is selected tenta-
tively as

ξl =
{

6/7l l �= n
1/7n−1 l = n.

(18)

The parameters in the OV functions are chosen as α′ =
α′′ = 1, β = 4.0, γ = tanh(4.0).

Figure 4 shows the space-time evolution of the head-
way for various vehicles in front in the cooperative driv-
ing vehicle following model and the BLA-OV model. The
patterns (a) and (b) in Figure 4 exhibit the time evo-
lution of the headway profile for the cooperative driving
car following model as n = 1, 2, and the patterns (c) and
(d) correspond to that for the BLA-OV model under the
same condition. In patterns (a) and (b), the traffic flow
is unstable because the instability condition (16) is satis-
fied for n = 1, 2 in the condition that p = 1.0, a = 1.6.
When small disturbances are added to the uniform traf-
fic flow, they are amplified with time and the uniform
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Fig. 4. Space-time evolution of the headway after t = 10 000. The patterns (a), (b) for the cooperative driving car following
model, The patterns (c), (d) for the BLA-OV model.

flow changes finally into an inhomogeneous one. In pat-
terns (c) and (d), due to the backward looking effect, the
stability is improved greatly for n = 1, 2 with the same
sensitivity, which demonstrates that the backward looking
effect can not be omitted in the OV model. Besides that,
only considering the next-nearest-neighboring interaction
is enough for suppressing the traffic jam in this situation.
With the same sensitivity, as the considered number of
vehicles in front increases, the amplitude of the density
wave decreases. In pattern (d), traffic flow is uniform over
the whole space. Therefore the simulation outcomes are in
agreement with analytical results.

6 Summary

We have proposed the BLA-OV model of traffic flow for
the purpose of constructing a cooperative driving system.
The form of optimal velocity function — equation (7), tak-
ing into account the non-local effect, and a novel optimal
velocity function — equation (8), describing the backward
looking effect are given. Moreover the backward looking
effect works only if the headway ∆xj−1(x) less than the
safety distance hc. The traffic nature has been analytically
analyzed by using the linear stability analysis. It has been
shown that the combination of backward looking and for-
ward looking effects could further stabilize traffic flow. As
p = 1, the result is reduced to the cooperative driving car
following model. The simulation results confirm the stabil-
ity analysis for the BLA-OV model and give the optimal

state as n = 2, that is to say, only the information of two
vehicles ahead and one vehicle following is enough for a
good cooperative driving.

This work was supported by the National Basic Research
Program of China (Grant No. 2006CB705500), the National
Natural Science Foundation of China (Grant Nos. 10602025,
10532060) and K.C. Wong Magna Fund in Ningbo University.

References

1. D. Helbing, A. Hennecke, V. Shvetsov, M. Treiber, Trans.
Res. Part B 35, 183 (2001)

2. T. Nagatani, Phys. Rev. E 60, 6395 (1999)
3. Y. Xue, Acta Physica Sinica 53, 25 (2004)
4. H.X. Ge, S.Q. Dai, Y. Xue, L.Y. Dong, Phys. Rev. E 71,

066119 (2005)
5. H. Lenz, C.K. Wagner, R. Sollacher, Eur. Phys. J. B 7,

331 (1998)
6. K. Hasebe, A. Nakayama, Y. Sugiyama, Phys. Rev. E 69,

017103 (2004)
7. H.X. Ge, S.Q. Dai, L.Y. Dong, Y. Xue, Phys. Rev. E 70,

066134 (2004)
8. A. Nakayama, Y. Sugiyama, K. Hasebe, Phys. Rev. E 65,

016112 (2001)
9. K. Hasebe, A. Nakayama, Y. Sugiyama, Phys. Rev. E 68,

026102 (2003)
10. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y.

Sugiyama, Phys. Rev. E 51, 1035 (1995)


